
Europhotonics : Questions in Quantum Optics
1. Demonstrate the identity : [

Â, B̂Ĉ
]
=

[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
(1)

Solution : [
Â, B̂Ĉ

]
= ÂB̂Ĉ − B̂ĈÂ[

Â, B̂
]
Ĉ + B̂

[
Â, Ĉ

]
= ÂB̂Ĉ − B̂ÂĈ + B̂ÂĈ − B̂ĈÂ .

2. Use the identity of eq. (1) to evaluate the following expressions : (Rappel : N̂ℓ = â†ℓ âℓ and
[
âℓ, â

†
ℓ

]
= 1 ),

A.
[
âℓ, N̂ℓ

]
Solution : [

âℓ, N̂ℓ

]
=

[
âℓ, â

†
ℓ âℓ

]
=

[
âℓ, â

†
ℓ

]
âℓ + â†ℓ [âℓ, âℓ]

= âℓ

B.
[
â†ℓ, N̂ℓ

]
Solution : [

â†ℓ, N̂ℓ

]
=

[
â†ℓ, â

†
ℓ âℓ

]
=

[
â†ℓ, â

†
ℓ

]
âℓ + â†ℓ

[
â†ℓ, âℓ

]
= −â†ℓ

C.
[
âℓ, â

†
ℓ âℓâ

†
ℓ

]
Solution : [

âℓ, â
†
ℓ âℓâ

†
ℓ

]
=

[
âℓ, N̂ℓ

]
â†ℓ + N̂ℓ

[
âℓ, â

†
ℓ

]
= âℓâ

†
ℓ + N̂ℓ

= 1 + 2â†ℓ âℓ = 1 + 2N̂ℓ .

For the following questions, let us consider the special (but common case) where
[
Â, B̂

]
̸= 0 but we still have the

condition that : [
Â,

[
Â, B̂

]]
= 0 =

[
B̂,

[
Â, B̂

]]
. (2)

3. Under the condition of eq. (2), demonstrate the identity :[
B̂, Ân

]
= nÂn−1

[
B̂, Â

]
. (3)

Solution : We can prove this relation by recurrence. It is trivially true n = 1 :[
B̂, Ân=1

]
= Â0

[
B̂, Â

]
=

[
B̂, Â

]
Provided that eq. (3) is true for any n ≥ 1, then we can show that it is true for n+ 1 :[

B̂, Ân+1
]
=

[
B̂, ÂnÂ

]
=

[
B̂, Ân

]
Â+ Ân

[
Â, B̂

]
= nÂn−1

[
B̂, Â

]
Â+ Ân

[
B̂, Â

]
(4)



where we used eq. (1) and eq. (3). With the precondition of eq. (2) we have that
[
Â,

[
Â, B̂

]]
= 0, which tells us that :[

Â,
[
B̂, Â

]]
= 0 =⇒

[
B̂, Â

]
Â = Â

[
B̂, Â

]
(5)

Putting eq. (5) into eq. (4) we �nd :[
B̂, Ân+1

]
=

[
B̂, ÂnÂ

]
=

[
B̂, Ân

]
Â+ Ân

[
B̂, Â

]
= nÂn−1Â

[
B̂, Â

]
+ Ân

[
B̂, Â

]
= (n+ 1) Ân

[
B̂, Â

]
Q.E.D. (6)

4. Use the identity derived in eq. (3) to show that :[
B̂, e−Âx

]
= −xe−Âx

[
B̂, Â

]
. (7)

Solution : [
B̂, e−Âx

]
=

∑
m=0

1

m!

[
B̂,

(
−Âx

)m]
=

∑
n=1

xm(−1)m

m!

[
B̂, Âm

]
=

∑
n=1

xm(−1)m

m!
mÂm−1

[
B̂, Â

]

=
∑
m=1

(−x) (−1)
m−1

xm−1Âm−1

(m− 1)!

[
B̂, Â

]
=

∑
n=0

(−x)

(
−xÂ

)n

n!

[
B̂, Â

]
= −xe−Âx

[
B̂, Â

]
,

where we have invoked the identity of eq. (3) to arrive at the second and we make a change of index, n ≡ m− 1 at
the end of the third line.

5. Use the identity eq. (7) to derive the following expression :

eÂxB̂e−Âx = B̂ − x
[
B̂, Â

]
. (8)

Solution : We multiply eq. (7) on the left by eÂx

eÂx
[
B̂, e−Âx

]
= eÂxB̂e−Âx − eÂxe−ÂxB̂ = −xeÂxe−Âx

[
B̂, Â

]
(9)

eÂxB̂e−Âx = B̂ − x
[
B̂, Â

]
(10)

6. Let us de�ne the operator, Ô(x) ≡ eÂxeB̂x. Calculate the derivative : dÔ
dx , and use the expression of eq. (8) to show

that :

dÔ

dx
=

(
Â+ B̂ + x

[
Â, B̂

])
Ô . (11)

Solution :

dÔ

dx
=

d

dx
eÂxeB̂x = ÂeÂxeB̂x + eÂxB̂eB̂x

= ÂeÂxeB̂x + eÂxB̂e−ÂxeÂxeB̂x

=
{
Â+ eÂxB̂e−Âx

}
Ô

=
(
Â+ B̂ + x

[
Â, B̂

])
Ô

(12)

where we used eq. (8) in the last line.
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7. Since
[
Â, B̂

]
commutes with both Â and B̂, we can solve eq. (11) with the usual solution to di�erential equations

methodology. In this manner, derive the relation (known as the Baker-Haussdorf-Campbell theorem) :

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂] . (13)

Solution : Since eq. (11) can be treated as an ordinary di�erential equation involving `classical' numbers, the solution
is found by integrating a separable equation :∫

dÔ

Ô
=

∫ (
Â+ B̂ + x

[
Â, B̂

])
dx

=⇒ ln Ô =

(
Âx+ B̂x+

x2

2

[
Â, B̂

])
+ Cte (14)

=⇒ Ô(x) = C exp

(
Âx+ B̂x+

x2

2

[
Â, B̂

])
(15)

where we must have C = 1 in order satisfy the limit condition at x = 0, and we �nally obtain eq. (13) theorem by taking
x = 1. The result of eq.(13) is in fact a special case of a more general formulahttps://en.wikipedia.org/wiki/Baker-
Campbell-Hausdor�_formula.

8. Let us consider the following harmonic oscillator state (or alternatively a mono-mode electromagnetic state) :

|Ψ⟩ = 1√
2
{|0⟩+ |4⟩} . (16)

A. Calculate n = ⟨Ψ| N̂ |Ψ⟩ = ⟨Ψ| â†â|Ψ⟩.
Solution :

⟨Ψ|n|Ψ⟩ = 1

2
{⟨4|+ ⟨0|} â†â {|0⟩+ |4⟩} =

1

2
{⟨4|+ ⟨0|} N̂ {|0⟩+ |4⟩} = 2

B. Calculate n2 = ⟨Ψ| N̂2|Ψ⟩.
Solution :

⟨Ψ| N̂2|Ψ⟩ = 1

2
{⟨4|+ ⟨0|} N̂2 {|0⟩+ |4⟩} = 8

.

C. Calculate ∆n ≡
√
n2 − n2

Solution :

∆n =

√
n2 − n2 = 2

Let us continue to consider mono-mode radiation states. The quadrature operators of the mode are :

X1 =
1√
2

(
â+ â†

)
X2 =

1

i
√
2

(
â− â†

) (17)

9. For the mono-mode vacuum state, |0⟩, and the quadrature operators , X1, and X2, given in eq. (17) :

A. Calculate ⟨Xi⟩0 = ⟨0|Xi|0⟩, for i = 1, 2.

Solution :

⟨Xi⟩0 =
1√
2
⟨0|

(
â+ â†

)
|0⟩ = 1

i
√
2
⟨0|

(
â− â†

)
|0⟩ = 0
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B. Calculate
〈
X2

i

〉
0
= ⟨0|X2

i |0⟩, for i = 1, 2.

Solution : Taking the square of the quadrature operators, and using the fact that :[
â, â†

]
= 1 =⇒ ââ† = 1 + â†â

we �nd that

X̂2
1 =

1

2

(
ââ+ â†â† + 2â†â+ 1

)
X̂2

2 = −1

2

(
ââ+ â†â† − 2â†â− 1

) (18)

=⇒ ⟨0|X̂2
1 |0⟩ = ⟨0|X̂2

2 |0⟩ =
1

2
.

C. Calculate ∆Xi =
√
⟨X2

i ⟩0 − ⟨Xi⟩20 for i = 1, 2.

Solution : We have

∆Xi =
1√
2

for i = 1, 2 (19)

This means that there are always �uctuations of the dynamic variables in the vacuum state (a signature
result of quantum mechanics). N.b. that this does not mean that everything is uncertain in quantum
mechanics (quantities like energy, polarization, and angular momentum may be perfectly well-de�ned for
example). One should remark that by adopting dimensionless quadrature operators, we are e�ectively
working in `natural' units of ℏ = 1, and the Heisenberg uncertainty relations read ∆X1∆X2 ≥ 1

2 . The
vacuum state thereby corresponds to a limit of the minimal Heisenberg uncertainty, ∆X1∆X2 = 1

2 . It is also

worth remarking that there is equal uncertainty in the X1 and X2 coordinates, (i.e. ∆X1 = ∆X2 = 1/
√
2).

This equality may seem rather `obvious' given the symmetry of the vacuum state, but we should ask ourselves
if the equality of uncertainty in X1 and X2 always holds (the next question will give us an example of
situations where ∆X1 ̸= ∆X2 and where one can have ∆X1 < 1/

√
2 provided that ∆X2 > 1/

√
2, or vice

versa).

Let us now consider a mono-mode photon state, |Ψ⟩, which is a superposition of the vacuum, |0⟩ and a 1-photon
state, |1⟩. We can then adopt the `qubit' notation for this state and write an arbitrary superposition as :

|Ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩ . (20)

where θ ∈ [0, 2π] and ϕ ∈ [0, 2π[ . N.b. the states |0⟩ and |1⟩ are related by the usual `ladder' operators â†|0⟩ = |1⟩,
â|1⟩ = |0⟩.

10. For the state |Ψ⟩ of eq. (20) :
A. Calculate ⟨Xi⟩Ψ = ⟨Ψ|Xi|Ψ⟩, for i = 1, 2

Solution :

X1 =
1√
2

{
⟨0| cos(θ/2) + ⟨1|e−iϕ sin(θ/2)

} (
â+ â†

) {
cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩

}
=

2 sin(θ/2) cos(θ/2)√
2

(eiϕ + e−iϕ)

2
=

√
2 sin(θ/2) cos(θ/2) cosϕ

X2 =
1

i
√
2

{
⟨0| cos(θ/2) + ⟨1|e−iϕ sin(θ/2)

} (
â− â†

) {
cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩

}
=

2 sin(θ/2) cos(θ/2)

i
√
2

(eiϕ − e−iϕ)

2
=

√
2 sin(θ/2) cos(θ/2) sinϕ

B. Calculate
〈
X2

i

〉
Ψ
≡ ⟨Ψ|X2

i |Ψ⟩, for i = 1, 2.

Solution :

X2
1 =

1

2

{
⟨0| cos(θ/2) + ⟨1|e−iϕ sin(θ/2)

} (
ââ+ â†â† + 2â†â+ 1

) {
cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩

}
= sin2(θ/2) +

1

2
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X2
2 =

1

2

{
⟨0| cos(θ/2) + ⟨1|e−iϕ sin(θ/2)

} (
−ââ− â†â† + 2â†â+ 1

) {
cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩

}
= sin2(θ/2) +

1

2

C. Calculate ∆Xi(θ, ϕ) =
√
⟨X2

i ⟩0 − ⟨Xi⟩20 for i = 1, 2.

Solution :

∆X1(θ, ϕ) =

[
sin2 (θ/2)

(
1− 2 cos2 (θ/2) cos2 φ

)
+

1

2

]1/2
(21a)

∆X2(θ, ϕ) =

[
sin2 (θ/2)

(
1− 2 cos2 (θ/2) sin2 φ

)
+

1

2

]1/2
. (21b)

D. Calculate ∆X1∆X2 as a function of θ (and an arbitrary value of φ since ∆X1∆X2 is φ independent as you
can verify), and plot ∆X1∆X2 as a function of θ ∈ {0, 360}. Are the Heisenberg uncertainties satis�ed ?
Explain the behavior of this plot.

Figure 1 � ∆X1∆X2(θ) for the state |Ψ⟩ of eq. (20).

Solution : We see from �g. 1 that the minimal limit of the Heisenberg uncertainty is obtained when |Ψ⟩ is
the pure ground state, i.e. θ = 0 or 2π. Uncertainty reaches a maximum here for θ = 180 which corresponds
to |Ψ⟩ being a pure |1⟩ state. This is expected since pure number states, excepting the vacuum have more
than minimal quantum �uctuations, ∆X1∆X2 ≥ 1/2.

E. Calculate ∆X1(θ, ϕ) and ∆X2(θ, ϕ) as functions of θ for ϕ = 0 and ϕ = π/2 with θ ∈ {0, 360◦}. Can
∆Xi(θ, ϕ) have values inferior to those found for the vacuum state in the previous question ? Explain the
signi�cance of this.

Solution : We see from �g. 2 that for certain values of θ, ∆X1(θ) or ∆X2(θ) may individually go below
uncertainties of, 1√

2
, found for the vacuum state. Nevertheless, it is important to remark this this is always

accompanied by increased uncertainty in the conjugate variable such that the Heisenberg quantum uncer-
tainties, plotted in �g. 1 remain satis�ed. Nowadays, such states are frequently called `squeezed states' since
the �uctuations of a quadrature operator for such a state can be less than 1/

√
2.

The state |Ψ⟩ in the present case is limited to a superposition of only 2 states of light. Typical `squeezed
states' of light that one sees in the literature are constructed as an in�nite superposition of of number
states, (in a fashion quite analogous to the `coherent states' considered in the following questions).

For the the following questions, let us recall that an arbitrary monomode photon state, |ψ⟩, can be written as a
superposition of number states (Fock states), |n⟩ :

|ψ⟩ =
∞∑

n=0

Cn |n⟩ . (22)
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Figure 2 � Quantum uncertainties, ∆X1(θ) and ∆X2(θ) for the state |Ψ⟩ of eq. (20).

A quasi-classical state (Glauber state/coherent state) is given by the following superposition of number states :

|α⟩ ≡ e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ (23)

This expansion has the property (and can be deduced from the fact) that |α⟩ is an eigenstate of the destruction
operator :

â|α⟩ = α|α⟩ (24)

11. Demonstrate that |α⟩ is an eigenstate of the operator â.

Solution :

â |α⟩ = e−|α|2/2
∞∑
ν=0

αν

√
ν!
â |ν⟩ = e−|α|2/2

∞∑
ν=1

αν

√
ν!

√
ν |ν − 1⟩ = αe−|α|2/2

∞∑
ν=1

αν−1√
(ν − 1)!

|ν − 1⟩

= αe−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ = α|α⟩ ,

where in the last line we made the substitution of a new `dummy' index, n ≡ ν − 1

12. Demonstrate that one cannot construct an eigenstates of the operator â†. In other words, if â†|β⟩ = β|β⟩ then |β⟩ is
the null vector (not to be confused with the vacuum state, |0⟩), i.e. |β⟩ = 0.

Solution : If the state |β⟩ exists then we know that it can be expressed as a superposition of number states :

|β⟩ =
∞∑

n=0

Cn |n⟩ . (25)

Acting on this state with a creation operator yields :

â† |β⟩ =
∞∑
ν=0

Cν â
† |ν⟩ =

∞∑
ν=0

Cν

√
ν + 1 |ν + 1⟩ =

∞∑
ν=0

Cν

√
ν + 1 |ν + 1⟩ =

∞∑
n=1

Cn−1

√
n |n⟩ . (26)

The eigenvalue expression then requires that :

â† |β⟩ =
∞∑

n=1

Cn−1

√
n |n⟩ = β

∞∑
n=0

Cn |n⟩ . (27)

which requires that

C0 = 0

Cn =

√
n

β
Cn−1 n ∈ {1, 2, ...∞}

=⇒ Cn = 0 n ∈ {1, 2, ...∞}
=⇒ |β⟩ = 0 .

(28)
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13. For a coherent state, |α⟩.
A. Calculate the average number of photons : n = ⟨n̂⟩ ≡ ⟨α| â†â |α⟩.

Solution :

n = ⟨n̂⟩ ≡ ⟨α| â†â |α⟩ = ⟨α|α∗α |α⟩

= ⟨α| |α|2 |α⟩

= |α|2 ,

where we used the property of eq. (24) and its adjoint, ⟨α|a† = ⟨α|α∗ .

B. Calculate ⟨Xi⟩α = ⟨α|Xi|α⟩ for i = 1, 2.

Solution :

⟨α|X1|α⟩ =
1√
2

〈
α|

(
â+ â†

)
|α
〉

=
1√
2
(α+ α∗) =

√
2ℜ{α}

(29a)

⟨α|X2|α⟩ =
1

i
√
2

〈
α|

(
â− â†

)
|α
〉

=
1

i
√
2
(α− α∗) =

√
2ℑ{α}

(29b)

C. Calculate
〈
X2

i

〉
α
≡ ⟨α|X2

i |α⟩, for i = 1, 2.

Solution : 〈
X̂2

1

〉
=

1

2
⟨α| ââ+ â†â† + 2â†â+ 1 |α⟩

=
1

2

{
α2 + (α∗)

2
+ 2α∗α+ 1

}
=

1

2
(α+ α∗)

2
+

1

2
= 2ℜ{α}2 + 1

2
,

(30a)

where we have used : [
â, â†

]
= 1 =⇒ ââ† = 1 + â†â ,

and eq. (18). Similarly : 〈
X̂2

2

〉
= −1

2
⟨α|

(
ââ+ â†â† − 2â†â− 1

)
|α⟩

=
1

2

{
−α2 − (α∗)

2
+ 2α∗α+ 1

}
=

1

2

(
α− α∗

i

)2

+
1

2
= 2ℑ{α}2 + 1

2
.

(30b)

D. Calculate ∆Xi =
√
⟨X2

i ⟩α − ⟨Xi⟩2α for i = 1, 2.

Solution : Combining the results of eqs.(29) and (30) we �nd

∆X1 = ∆X2 =
1√
2
. (31)

The take away message here is that quantum �uncertainties� of the quadrature variables of a coherent state
are symmetric and the same as for the vacuum state. This is part of the reasoning that has led to coherent
states sometimes being referred to as a �displaced� vacuum states.

For the following questions, let us consider a beam splitter with an input state, |Ψ⟩, expressed either in the basis of
entry channels |Ψ⟩1,2 or in the basis of output channels |Ψ⟩3,4 :

One can interpret the beam splitter as acting on the destruction operators in the following manner :

â3 = râ1 + tâ2 â4 = tâ1 + r′â2 ,
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Figure 3 � Beam splitter acting translate input channels (1) and (2) into output channels (3) and (4).

where r and t are the complex valued re�ection and transmission coe�cients of the beam splitter (obtained by
either measurement or an electromagnetic optics calculation) :[

â3
â4

]
=

[
r t
t r′

] [
â1
â2

]
= [S]

[
â1
â2

]
, (32)

where [S] is called the S-matrix. In the case of a lossless beam splitter, the S-matrix must be a unitary matrix, i.e.

S†.S = S.S† = I . (33)

14. Show that the lossless condition of eq. (33) requires the `obvious' energy conservation relations :

|r|2 + |t|2 = 1 (34a)

|r′|2 + |t|2 = 1 (34b)

Interpret the signi�cance of these relations in terms of beam power (intensity).

Solution : Writing out explicitly eq.(33) yields :

S†.S =

[
r∗ t∗

t∗ r′,∗

] [
r t
t r′

]
=

[
|r|2 + |t|2 r∗t+ t∗r′

t∗r + t∗r′,∗ |r′|2 + |t|2
]
=

[
1 0
0 1

]
, (35)

and so eqs.(34) are obtained by equating the diagonal elements in (35). Since intensity is proportional to the �eld
amplitude squared, (34a) is just the statement that the �eld intensity in output channel 3 is the sum of input
intensity re�ected from channel 1 plus the intensity transmitted from input channel 2. Analogously, (34b) is that the
�eld intensity in output channel 4 is the sum of input intensity transmitted from channel 1 plus the intensity re�ected

from input channel 2. We thus conclude that eqs.(34) are the energy conservation relations that one would naievely
expect.

15. Show that the lossless condition of eq. (33) also requires the `less obvious' energy conservation relations :

r∗t+ t∗r′ = 0 (36a)

t∗r + tr′,∗ = 0 (36b)

Explain why these `two' conditions are in fact the same condition on the complex coe�cients.

Solution : These relations are obtained by equating the o�-diagonal elements of eq.(35). The physical interpretation
of these constraints is far less obvious than for the previous question. Furthermore, they are in fact only a single
condition since eq.(36a) and eq.(36b) are complex conjugates of one another.

16. For a beam splitter that is mirror symmetric with respect to a plane at the center of the beam splitter's diagonal,
often called a symmetric beam splitter, one has r = r′. For this symmetric case, what do the relations of eq. (36)
have to say about the phase relations between the coe�cients r and t ? (Hint : write r = |r|eiϕr and t = |t|eiϕt , and
determine the relation between ϕr and ϕt imposed by eq. (36).
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Solution :

r∗t = −t∗r′ =⇒ |r|e−iϕr |t|eiϕt = −|t|e−iϕt |r|eiϕr

=⇒ e2i(ϕt−ϕr) = −1 = eiπ

=⇒ |ϕt − ϕr| =
π

2
.

(37)

The interesting thing here is that a combination of the mirror symmetry and the unitarity requirement imposes that
complex transmission and re�ection coe�cients of the beam splitter be 90◦ out of phase. This will have important
consequences as we will see in the following exercises.

17. Which of these S-matrices are physically acceptable for a lossless beam splitter ?

Solution : We need to verify that the unitarity condition, S† = S−1, of eq.(33) is satis�ed for each potential
S-matrix.

A. [S] =

[
iρ t
t iρ

]
for real-valued ρ and t with ρ2 + t2 = 1.

Solution : Acceptable because S†S =

[
−iρ t
t −iρ

] [
iρ t
t iρ

]
=

[
1 0
0 1

]
. We see that the r = iρ and t = τ

coe�cients are indeed out of phase by 90◦ as required by eq.(37). We were free to take the coe�cients t to
be real here since the S-matrix is only determined up to a phase factor, but eq.(37) then required here the
r coe�cient to be purely imaginary.

B. [S] =

[
r t
t −r

]
for r and t real-valued with r2 + t2 = 1.

Solution : Acceptable because S†S =

[
r t
t −r

] [
r t
t −r

]
=

[
1 0
0 1

]
. For this S-matrix we have gone back

to eq. (32) and not required the S-matrix to be mirror symmetric. This allows us to set r′ = −r and then
�x all the S-matrix coe�cients to be real-valued. This S-matrix is often used to model a partially silvered
beam splitter with a thin metallic coating on one face. In contrast to typical thin �lm beam splitters which
only work in a narrow band of frequencies, such a beam splitter operates over a much larger spectral range.
This S-matrix can be convenient for calculations since r, −r and t are all real numbers, and we can be
relatively care-free when calculating adjoints, since S† = S, but we must now be careful with the signs
when carrying out calculations. Many books on quantum optics tend to favor calculations with a mirror
symmetric beam splitter. As a counter example, the Corserra course by Alain Aspect carries out all beam
splitter calculations using the S-matrix presented here. As you might suspect, the measurable physical
predictions of such di�erent choices are largely (or exactly) the same.

C. [S] =

[
ρ iτ

−iτ ρ

]
for ρ and τ real-valued with ρ2 + τ2 = 1.

Solution : Not acceptable because S†S =

[
ρ iτ

−iτ ρ

] [
ρ iτ

−iτ τ

]
=

[
1 2iρτ

−2iρτ 1

]
. The matrix in question

here is Hermitian, not unitary.

D. [S] =

[
r iτ
iτ r

]
for r and τ real-valued with r2 + τ2 = 1 for ρ and τ real with r2 + τ2 = 1 Solution :

Acceptable because S†S =

[
r −iτ

−iτ r

] [
r iτ
iτ r

]
=

[
1 0
0 1

]
. This is another common way of describing a

thin �lm beam splitter like that described by the S-matrix of A. The choice between A. and D. is just
considered a matter of personal choice.

18. Given the S-matrix relation of eq. (32), and the results of previous questions, show that transformation of the creation
operators is : [

â†1
â†2

]
=

[
r t
t r′

] [
â†3
â†4

]
= [S]

[
â†3
â†4

]
. (38)

Solution : We �rst multiply eq.(32) by S† = S−1 :[
r∗ t∗

t∗ r′,∗

]
.

[
â3
â4

]
=

[
r∗ t∗

t∗ r′,∗

]
.

[
r t
t r′

] [
â1
â2

]
,

=⇒
[
â1
â2

]
=

[
r∗ t∗

t∗ r′,∗

]
.

[
â3
â4

]
=⇒

{
â1 = r∗â3 + t∗â4
â2 = t∗â3 + r′,∗â4

,
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Taking the adjoint of all quantities in the this last equation leads to :

â†1 = râ†3 + tâ†4
â†2 = tâ†3 + r′â†4

=⇒
[
â†1
â†2

]
=

[
r t
t r′

] [
â†3
â†4

]
Q.E.D. (39)

19. Let us consider the state |n⟩1 with n photons in channel 1. Express |n⟩1 in terms of â†1 and the vacuum state of
channel 1, |0⟩1 :

A. |n⟩1 = 1√
n!

(
â†1

)n

|0⟩1

B. |n⟩1 = 1√
(n−1)!

(
â†1

)n

|0⟩1

C. |n⟩1 =
√
n!

(
â†1

)n

|0⟩1

Solution : Result A. is correct since |n⟩ is produced by applying, â†1, n times to the vacuum state and appealing to

the fact that â†1 |n⟩1 =
√
n+ 1 |n+ 1⟩1 on the state |0⟩1. The answers B. and C. are not correct because only answer

A. satis�es the normalization condition that 1⟨n|n⟩1 = 1.

20. Express |Ψ⟩ = |n⟩1 ⊗ |m⟩2 = |n,m⟩1,2 in terms of â†1 and â†2 acting on the vacuum of the 2 channels |0, 0⟩. Note that
the vacuum state doesn't depend on the chosen basis. (more than one correct response possible)

A. |Ψ⟩ = 1√
n!m!

â†n1 â†m2 |0, 0⟩

B. |Ψ⟩ = 1√
n!m!

â†m1 â†n2 |0, 0⟩

C. |Ψ⟩ = 1√
n!m!

â†m2 â†n1 |0, 0⟩
Solution : The tensor product space of n photons states in input channel 1 and m photons in channel 2 is produced
by multiplying â†n1 by â†m2 with these operators acting on the vacuum state |0, 0⟩ (n.b. we wrote the vacuum state,
|0, 0⟩ = |0⟩1|0⟩2 = |0⟩3|0⟩4 in order to insist that the vacuum state is a tensor product of vacuum states in channels
or 1 and 2, or alternatively 3 and 4, which for simplicity one often writes simply |0⟩). The factor 1√

n!m!
assures the

proper normalisation. Both A. and C. are correct here, since that â†n1 and â†n2 commute, their order is irrelevant.

21. Consider the state |Ψ⟩ = |1, 0⟩1,2. Give the expression for this state in the base of the output channels.

A. |Ψ⟩ = |1, 0⟩1,2 = r∗|1, 0⟩3,4 + t∗|0, 1⟩3,4
B. |Ψ⟩ = |1, 0⟩1,2 = t∗|1, 0⟩3,4 + r∗|0, 1⟩3,4
C. |Ψ⟩ = |1, 0⟩1,2 = r|1, 0⟩3,4 + t|0, 1⟩3,4

Solution : Using eq.(39) to express â†1 in terms of â†3 and â†4, we obtain the result :

|1, 0⟩1,2 = â†1|0, 0⟩ =
(
râ†3 + tâ†4

)
|0, 0⟩ = r|1, 0⟩3,4 + t|0, 1⟩3,4 .

22. Find the probability of detecting a photon in channels (3) and (4) respectively when a 1-photon state is incident
in channel (1) ? Concretely this amounts to calculate the probability with Born's rule (P3 = |3,4⟨1, 0|Ψ⟩|2 and
P4 = |3,4⟨0, 1|Ψ⟩|2). Explain why results like these lead to people sometimes saying that Maxwell equations can
be interpreted being a `quantum' theory of 1-photon states.

Solution : The probability of detecting the photon in `perfect' detector (3) is the same as calculating the probability
for �nding |Ψ⟩ in the state |1, 0⟩3,4 :

P3 = |3,4⟨1, 0|Ψ⟩|2 = |3,4⟨1, 0| {r|1, 0⟩3,4 + t|0, 1⟩3,4} |2

= |r|2 ,

and in the same manner,

P4 = |3,4⟨0, 1|Ψ⟩|2 = |3,4⟨0, 1| {r|1, 0⟩3,4 + t|0, 1⟩3,4} |2

= |t|2 .

We recall that the `classical' prediction of Maxwells equations for the intensity of �eld in outputs (3) and (4) are
respectively :

I3 = I|r|2

I4 = I|t|2
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Recalling that I ∝ ||E||2, we see that the �eld `intensity' predictions of Maxwell equations can be equated to the
probability of a 1-photon state being detected. This is all quite reassuring since quantum optics has to contain the
same physics as classical electromagnetism, and if look at a classical �eld as corresponding to a high �ux of individual
photons, then the �eld intensity at a point in an optical system will be proportional to the quantum probability of
�nding a photon at the space-time point in question.

The quantum theory of single photons does however make predictions that a classical theory cannot describe, perhaps
the most notable being the fact that it predicts that a single-photon sent into a beam splitter must be detected in
either detector (3) or detector (4) but not both at the same time. At this point, it may look like quantum optics
only makes rather `minor ' corrections to classical electromagnetism. The next questions show however that when one
considers a second photon, dramatic departures from classical physics become possible.

23. Express the state |Ψ⟩ = |n,m⟩1,2 in terms of the creation operators in the output channels, â†3 and â†4 for a mirror
symmetric beam splitter where r = r′ in the S-matrix of eq.(32).

A. |Ψ⟩ = 1√
n!m!

(
r∗â†3 − t∗â†4

)n (
t∗â†3 + r∗â†4

)m

|0, 0⟩

B. |Ψ⟩ = 1√
n!m!

(
r∗â†3 + t∗â†4

)n (
t∗â†3 + r∗â†4

)m

|0, 0⟩

C. |Ψ⟩ = 1√
n!m!

(
râ†3 + tâ†4

)n (
tâ†3 + râ†4

)m

|0, 0⟩
Solution : This result is obtained by employing the relations of eq. (38) in the expression given in question 20.

24. Consider the state, |Ψ⟩ = |1, 1⟩1,2, corresponding to exactly 1-photon arriving simultaneously in each entree mode
channel on a mirror symmetric beam splitter. What is the correct expression for |Ψ⟩ = |1, 1⟩1,2 in the output basis ?

A. |Ψ⟩ =
√
2 rt|2, 0⟩3,4 +

[
t2 + r2

]
|1, 1⟩3,4 +

√
2 tr|0, 2⟩3,4

Solution : This result follows from 23.C because one has :

|Ψ⟩ = |1, 1⟩1,2 =
(
râ†3 + tâ†4

)(
tâ†3 + râ†4

)
|0, 0⟩

= rtâ†3â
†
3|0, 0⟩+ r2â†3â

†
4|0, 0⟩+ t2â†4â

†
3|0, 0⟩+ trâ†4â

†
4|0, 0⟩

=
√
2 rt|2, 0⟩3,4 +

[
t2 + r2

]
|1, 1⟩3,4 +

√
2 tr|0, 2⟩3,4

B. |Ψ⟩ =
√
2 r∗t∗|2, 0⟩3,4 +

[
(t∗)2 + (r∗)2

]
|1, 1⟩3,4 +

√
2 t∗r∗|0, 2⟩3,4

C. |Ψ⟩ = r∗t∗|2, 0⟩3,4 +
[
(t∗)2 + (r∗)2

]
|1, 1⟩3,4 + t∗r∗|0, 2⟩3,4

25. Let us continue with the preceding question with the state |Ψ⟩ = |1, 1⟩1,2 corresponding to exactly one photon in
each entry channel. Consider now a symmetric 50/50 beam splitter with r = i√

2
and t = 1√

2
. What is the probability

to detect precisely 1 photon in each output mode channel ? (This is the famous Hong-Ou-Mandel e�ect)

A. 0

B. 1/3

C. 1/4

D. 1

Solution : P (1, 1) = |4,3⟨1, 1|Ψ⟩|2 = |4,3⟨1, 1|1, 1⟩1,2|2 =
∣∣
4,3⟨1, 1|

[
t2 + r2

]
|1, 1⟩3,4

∣∣2 = 0, where the 90◦ phase
di�erence between r and t is crucial here because it is what gives us that t2 + r2 = 0. It is worth remaking that the
probability of observing a 2-photon state in output state (3), P (2, 0), is :

P (2, 0) = |4,3⟨2, 0|Ψ⟩|2 = |4,3⟨2, 0|1, 1⟩1,2|2 =
∣∣∣4,3⟨2, 0|√2rt|2, 0⟩3,4

∣∣∣2 =
1

2
(40a)

and likewise the probability of observing a 2-photon state in output state (4), P (0, 2), is :

P (0, 2) = |4,3⟨0, 2|Ψ⟩|2 = |4,3⟨0, 2|1, 1⟩1,2|2 =
∣∣∣4,3⟨0, 2|√2tr|2, 0⟩3,4

∣∣∣2 =
1

2
. (40b)

We thus see that probabilities are indeed conserved and one only observes photons that have `coalesced' into a 2-
photon state in one of the output channels. This experiment led to a Nobel Prize due to its convincing demonstration
of a the truly quantum behavior of light.

26. Consider a partially silvered beam splitter described by the S-matrix in 17.B . Demonstrate that this beam splitter
generates the same coalesced 2-photon states as obtained with the symmetric beam splitter.
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